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Abstract The Löwdin-Inverse Löwdin Transformation (LILT) technique combined
with the Diophantine Density Matrix Purification (DDMP) method is suggested for a
charge-preserving density averaging approach for a range of nuclear configurations.

Keywords Electron density averaging · Charge invariance · Approximate density
matrices · Idempotency · Range of nuclear configurations

1 Introduction

Information on molecular properties can be deduced from molecular electron densities,
and the Hohenberg-Kohn theorem [1] with its various consequences and extensions
[2–6] provide the tools for the theoretical background for such analyses. Density
functional methods [7–12], as well as more conventional molecular orbital methods
[13–21] form the basis of contemporary modeling approaches suitable to access this
information.

Many molecular properties are actually associated not with a single nuclear arrange-
ment, but with a whole range of nuclear configurations. It is often useful to associate
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such ranges of nuclear configurations with domains of potential energy hypersurfaces,
for example, with formal catchment regions representing chemical species in the
potential surface model, and their various subdomains [22–33]. Whereas nuclear
arrangements associated with minimum energy conformations are commonly used
as reference when interpreting comparisons between experimental results and the
results of theoretical, computational modeling studies, nevertheless, in reality an entire
family of nuclear arrangements contributes to the experimentally observed molec-
ular properties. In the extreme case of single molecule experiments, the quantum
mechanical nature of molecules implies that models of single, geometrically defined
conformations cannot provide proper interpretations, and even in semi-classical rep-
resentations, the time scale of observation is usually such that necessarily a whole
range of semi-classical nuclear arrangements must be considered.

As a consequence, not individual conformations but ranges of molecular electron
density functions belonging to a family of nuclear arrangements, and various proper-
ties of such ranges are of importance. One of the simplest tools for studying the family
of electron densities in such conformational ranges is the statistical approach, gener-
ating various statistical moments for the distribution. The most important moment of
this distribution is the average electron density for the range.

In earlier studies various approaches have been described for the computation of
approximations for average electron densities [34–38]. One of the main problems re-
lates to the fact that simple direct averaging for a finite set of nuclear arrangements may
lead to fundamentally wrong results, where the number of local maxima of electron
densities might become a multiple of the actual density maxima present in the real mol-
ecule, simply as a consequence of averaging functions having local maxima at different
locations (corresponding to the differing locations of nuclei in the family of conforma-
tions considered). Even in the case of averaging densities of just two different nuclear
conformations, the relative nuclear locations differ, and it is likely that a simple, direct
averaging leads to twice the number of local density maxima. Whereas this problem
appears on a different level if not a finite number but a continuum of nuclear arrange-
ments is used, nevertheless, for proper averaging additional steps are needed [34–38].

One such approach [34,35] is based on the Löwdin-Inverse Löwdin Transforma-
tion (LILT) technique [39–42], a transformation that is related to an efficient, analo-
gous tool applied in quantum crystallography [43], where the fuzzy density fragment
approach is likely to provide advantages [44]. In the earlier implementation of the
LILT approach, the charge conservation problem has been addressed at the level of
transformations of individual electron densities to a common nuclear framework cor-
responding to that of the average density [34,35]. In that approach, the idempotency of
each transformed density matrix was ensured separately at the new geometry, and the
actual averaging was carried out for the corresponding transformed electron densities.
Although in principle this approach also leads to charge conservation, since for each
transformed density the total charge is conserved due to the actual way individual
idempotency of each of the transformed density matrices is achieved, nevertheless, it
appears useful to ensure that a single density matrix is generated that corresponds to
the average electron density, and the charge conservation condition is ensured by
enforcing the idempotency of this new density matrix. For this latter purpose the
recently proposed diophantine density matrix purification method [45] is suggested.
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In addition, by having access to this new “averaged” density matrix, some average
properties associated with the average density can also be easily computed, in addi-
tion to just the actual averaged electron density. This allows for a full exploitation
of the advantages of averaging. For this reason, in this contribution an alternative
approach, one based on the generation of a density matrix associated with the average
density is described. It is expected that by the use of statistical approaches to electron
density representations, most notably, by electron density averaging (and possibly by
using higher statistical moments such as standard deviation, skewness, and kurtosis),
some of the earlier approaches to the analysis of macromolecular electron densities
[46–67], molecular shape analysis methods [68–77], originally employed for shape
analysis of potential surfaces [33], and more general molecular similarity analysis
techniques [78–88] may find extensions and additional applications.

In the discussion below, we shall follow some of the derivation and the notations
of the previous approach [34,35] where averaging has been carried out directly for
densities.

2 Weighted averaging followed by “purification” of transformed
density matrices

Consider a set K of nuclear geometries Ki within a conformational domain of a
molecule:

K = {K1, K2, . . . Ki, . . . Km}. (1)

These nuclear geometries Ki can be considered as elements of a (3N-6)-dimensional
nuclear configuration space M [24,33] defined for a stoichiometric family of molecules
of the given N nuclei of the molecule. In contrast to the 3N-dimensional mass-weighted
Euclidean configuration space 3NE, space M is that of the internal configurations, also
called the “reduced nuclear configuration space”, where the Euclidean space redun-
dancies of rigid translations and rigid rotations are eliminated. In fact, M is the quotient
space of the Euclidean configuration space 3NE, by the equivalence relation generated
by rigid translations and rigid rotations. Note that M is a metric space with a well-
defined metric, a distance function d(Ki, Kj), but M is not a vector space, in fact, no
vector space representation is possible for any complete set of internal coordinates of
any diatomic or larger molecule [24,33].

The weighted average conformation Kav is taken as the formal average confor-
mation of configurations K1, K2, . . . Ki, . . . Km that minimizes the weighted aver-
age configuration-space distance between Kav and the “reference conformations” K1,
K2, . . . Ki, . . . Km, that is, as the conformation that minimizes the following sum:

s2(Kav, K ) = �i=1,mwid
2(Kav, Ki). (2)

Here the quantities wi are relative weights reflecting the relevance of the individual
conformations Ki, for example, these weights can be chosen as

wi = exp(−βEi)/�j=1,m exp(−βEj), (3)
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where

β = 1/kT (4)

for a suitable chosen “temperature” T, or some alternative quantity that serves as a
suitable tool for energy-averaging.

Evidently, for the choice above, the positive weight factors wi > 0 satisfy the
convexity constraint

�i=0,m wi = 1. (5)

Note that the search for the average conformation involves a multidimensional opti-
mization, the minimization of the quantity s2(Kav, K ) in Eq. 2, and simpler alternative
“quasi-average” and “biased average” constructions have also been explored [34–36].
Nevertheless, for simplicity of discussions, here we shall focus on the choice given by
Eq. 2.

Consider some 3NE-space representations

x(av), x(1), x(2), . . . x(i), . . . x(m) (6)

of internal configurations Kav, K1, K2, . . . Ki, . . . Km. Note that these representations
x(av), x(1), x(2), . . . x(i), . . . x(m) are not unique, due to the fact that rigid translations
and rotations yield the same internal configurations, nevertheless, for the discussions
below this redundancy does not lead to any ambiguity.

We shall assume that the same set of basis functions are used for a standard HF MO
computation, attached to the appropriate set of nuclei for each nuclear configuration
K1, K2, . . . Km. By referring to the Euclidean space representations x(1), x(2), . . . x(m)

, the individual AO basis functions ϕk(r, x(i)) with centers at the nuclear locations cor-
responding to the nuclear configuration x(i) are regarded as components of a formal
vector ϕ(x(i)). For each set of AO’s, the overlap matrix corresponding to the nuclear
configuration Ki is denoted by S(x(i)), and the corresponding first-order density matrix
is denoted by P(x(i)) .

Our first task is to convert the individual density matrices

P(x(1)), P(x(2)), . . .P(x(i)), . . .P(x(m)), (7)

obtained for the various configurations K1, K2, . . . Ki, . . . Km of set K to a set of
approximate, but idempotent density matrices for the average nuclear configuration
Kav.

P(x(av), [x(1)]), P(x(av), [x(2)]), . . . P(x(av), [x(i)]), . . .P(x(av), [x(m)]). (8)

Note that all these approximate density matrices refer to the same nuclear geometry
x(av), nevertheless, these matrices are generally different, since they originate from
different nuclear arrangements.
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For the purpose of generating these transformed density matrices P(x(av), [x(i)]),
we shall use the Löwdin transform-inverse Löwdin transform (LILT) method.

The well-known Löwdin transform

S(x(i))1/2P(x(i))S(x(i))1/2 (9)

of a density matrix P(x(i)), defined in terms of the AO basis set ϕ(x(i)), is generated by
pre- and post-multiplication by the matrix S(x(i))1/2. Since the overlap matrix S(x(i)) is
always positive definite, the formal “square-root” matrix S(x(i))1/2 always exists and
can be computed by standard techniques. The conceptually simplest technique involves
the solution of the eigenvalue problem of S(x(i)), followed by the replacement of the
eigenvalues with their square roots, and completed by pre- and post multiplications
with the orthogonal matrix of eigenvectors.

From the overlap-weighted idempotency property of density matrices,

P(x(i))S(x(i))P(x(i)) = P(x(i)), (10)

it follows that, the Löwdin transform S(x(i))1/2P(x(i))S(x(i))1/2 of the density matrix
P(x(i)) is idempotent with respect to ordinary matrix multiplication:

S(x(i))1/2P(x(i))S(x(i))1/2S(x(i))1/2P(x(i))S(x(i))1/2

= S(x(i))1/2P(x(i))S(x(i))1/2. (11)

The essence of the Löwdin transform-inverse Löwdin transform (LILT) method is
the observation that the AO basis reference of a density matrix can be approximately
“shifted” to an AO basis (of the same type) at a new set of atomic coordinates using
an interplay between overlap matrices at the two nuclear configurations.

We shall assume that the overlap matrix S(x(av)) is determined for the set of new
AO basis functions ϕ(x(av)), taken simply as the set ϕ(x(i)) of atomic orbitals placed
to the new nuclear location x(av). For each index i, an inverse Löwdin transform of
the idempotent matrix S(x(i))1/2P(x(i))S(x(i))1/2 can be generated by the new overlap
matrix S(x(av)). This provides an approximate density matrix P(x(av), [x(i)]) for the
average nuclear configuration x(av), and can be written as

P(x(av), [x(i)]) = S(x(av))−1/2S(x(i))1/2P(x(i))S(x(i))1/2S(x(av))−1/2. (12)

For each index i, this new approximate density matrix P(x(av), [x(i)]) is idempotent
with respect to multiplication involving the actual overlap matrix S(x(av)). Indeed,

P(x(av), [x(i)])S(x(av))P(x(av), [x(i)])
= S(x(av))−1/2S(x(i))1/2P(x(i))S(x(i))1/2

× S(x(av))−1/2S(x(av))S(x(av))−1/2S(x(i))1/2P(x(i))S(x(i))1/2S(x(av))−1/2

= S(x(av))−1/2S(x(i))1/2P(x(i))S(x(i))1/2S(x(i))1/2P(x(i))S(x(i))1/2S(x(av))−1/2

= S(x(av))−1/2S(x(i))1/2P(x(i))S(x(i))1/2S(x(av))−1/2

= P(x(av), [x(i)]), (13)
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that is,

P(x(av), [x(i)])S(x(av))P(x(av), [x(i)]) = P(x(av), [x(i)]), (14)

where the facts that

S(x(av))−1/2S(x(av))S(x(av))−1/2 = I, (15)

the unit matrix, and the idempotency of S(x(i))1/2P(x(i))S(x(i))1/2,

S(x(i))1/2P(x(i))S(x(i))1/2S(x(i))1/2P(x(i))S(x(i))1/2

= S(x(i))1/2P(x(i))S(x(i))1/2 (16)

have been exploited.
In earlier studies [34–36] the averaging has focused on electron densities, and indi-

vidual densities have been used for various conformations to generate an approximate
electron density for some intermediate location in configuration space. Whereas those
approaches have their advantages, notably in the fact that the averaging actually occurs
for a physically observable property, electron density, nevertheless, the assurances that
the computed electron density fulfills some necessary conditions (e.g., that it can be
represented by a density matrix that fulfills the idempotency condition) were not easy
to achieve.

For this reason in this study we follow a different approach: first an approximate
density matrix P(x(av), [x(av)]) is generated by collecting the “weighted” information
form the already transformed density matrices P(x(av), [x(i)]), and then the idempo-
tency condition is directly enforced by a density matrix “purification” method, leading
to an improved approximate density matrix P(x(av)) at the averaged nuclear config-
uration. Using this idempotent density matrix P(x(av)) a new approximate electron
density ρ(x(av)) (and other properties) can be computed for the nuclear configuration
Kav.

The approximate density matrix P(x(av), [x(av)]) is obtained by the analogous (or
possibly a different) weighted averaging as that used for the nuclear configurations:

P(x(av), [x(av)]) = �i=1,mwiP(x(av), [x(i)]). (17)

Note that the trace of each of these matrices occurring in the summation is properly
reflecting the electron count, since each individual density matrix is idempotent with
respect to the actual S(x(av)) overlap matrix (Eq. 14), furthermore, their convex com-
bination in Eq. 17 also preserves this property. Nevertheless, their average may deviate
from exact idempotency. For this reason, a density matrix purification procedure is
recommended.

It is useful to recall that in the transformations leading to the averaging, the eigen-
values (and using most methods, the eigenvectors) of the overlap matrix S(x(av)) have
been computed, and eigenvalue methods are necessarily required for the approach.
Consequently, the one-step diophantine method (DDMP) of density matrix purifica-
tion [45] is especially suitable for the actual task at hand.

123



J Math Chem (2008) 44:1023–1032 1029

When applying this approach, one takes the eigenvalue equation for the correspond-
ing approximate density matrix P(x(av), [x(av)]):

P(x(av), [x(av)])(avav)L =(avav) L(avav)A, (18)

where (avav)L is the matrix of the eigenvectors and (avav)A is the diagonal matrix of
eigenvalues:

(avav)Aij =(avav) aiδij. (19)

Since a typical density matrix P(x(av), [x(av)]) is approximate, the (avav)ai eigen-
values are almost always different from both 0 and 1, furthermore, the density matrix
P(x(av), [x(av)]) is almost always non-degenerate.

It has been shown in ref. [45] that if the McWeeny density matrix purification
method [20] is applied to any approximate density matrix P(appr), then the final, con-
verged (idempotent) density matrix will have the same eigenvectors L as those of the
original matrix, and only the eigenvales change during that purification process. This
recognition, and the fact that the eigenvalues of the final, converged (idempotent)
density matrix must be either 1 or zero, have led to a one-step Diophantine matrix
solution, simply by replacing the eigenvalues by the value 1 or 0, whichever is closer
to the initial eigenvalue, and use the eigenvector matrix L to obtain a matrix equal to
the final converged matrix of the McWeeny iterative process.

In our actual case, one obtains the Diophantine integer matrix (av)A of elements
(av)Aij defined as

(av)Aij = ent(0.5 +(avav) Aij), (20)

where ent is the integer part (entier) function. Using this Diophantine matrix (av)A of
integers, the actual, idempotent density matrix P(x(av)) is obtained in a single step as

P(x(av)) =(avav) LA(av)(avav)L−1. (21)

This entire DDMP “purification” process involves only a single additional matrix
diagonalization, that of the initial approximate density matrix P(x(av), [x(av)]) and the
matrix multiplication of Eq. 21.

Note that, in the matrix multiplication step (21), the central matrix is not only diag-
onal, but it also corresponds to identity in one subspace, and to the zero matrix in the
complementing subspace, that reduces the complexity of the associated computational
task.

Using the averaged density matrix P(x(av)), various “averaged” molecular prop-
erties can be computed for the conformational range represented by the family K ,
for example, an approximate electron density ρappr(r, x(av)) can be computed for the
average nuclear geometry x(av):

ρappr(r, x(av)) = �k=1,n�j=1,n Pkj(x(av))ϕk(r, x(av))ϕj(r, x(av)). (22)
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This approximate electron density is obtained using the idempotent density matrix
approximation P(x(av)) where the charge conservation is maintained, and the idem-
potency provides some quality assurances.

3 Conclusions

The approach presented provides a new averaging procedure designed directly for
idempotent approximate density matrices corresponding to a “compromise” for a range
of nuclear configurations, for example, those belonging to a region of a “catchment
region” representing a stable chemical species on a potential energy surface. The new
approach avoids some of the ambiguities associated with direct electron density aver-
aging, that has not allowed in general to use simple quality tests, such as idempotency,
available for density matrices.
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